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Abstract

!We present necessary and sufficient conditions for blind equalization/deconvolution (without

observing the input) of an unknown, possible non-minimum phase linear time invariant system

(channel). Based on that, we propose a family of optimization criteria and prove that their solution

correspond to the desired response. These criteria, and the associated gradient-search algorithms,

involve the computation of high order cumulants. The proposed criteria are universal in the sense

that they do not impose any restrictions on the probability distribution of the input symbols. We

also addiess the problem of additive noise in the system and show that in several important cases,

e.g. when the additive noise is Gaussian, the proposed criteria are unaffected.



I. Introduction

Inverse filtering, or blind equalization/deconvolution, is a problem of considerable practical

interest in diverse fields including seismology, radio astronomy, underwater acoustic telemetry,

and data communication. The problem is illustrated in Figure 1. We observe the output y, of

an unknown possibly non-minimum phase linear time-invariant system H with inpat a,, being

a sequence of independent identically distributed (i.i.d.) random variables with a prespecified

probability distribution. We want to recover the input sequence, or equivalently, to identify the

inverse H -1 of H using a tap-delay line C. This, in turn, requires the identification of both

the magnitude and the phase of the unknown system's transfer function. The magnitude can be

identified using second order moments of the output signal. However, phase identification requires

the calculation of higher order moments/cumulants.

The paper by Sato [1] and Godard [2] approach the problem of blind equalization by introducing

new criteria, different from the mean square error (m.s.e.) criterion used for trained equalizers, and

then apply gradient-search algorithms to optimize the selected criteria. Sato's method and Godard's

method axe further analyzed by Benveniste and Goursat [3] and by Foschini [4], respectively, and

the conditions necessary to ensure the convergence of the respective algorithms are specified.

The paper by Benveniste, Goursat, and Ruget [5] presents several concepts and results that

significantly contributed to the understanding of the problem. First, it has been established that

a criterion based on second order statistics, e.g. the m.s.e. criterion, is insufficient for phase

identification. For that reason, the problem cannot be solved when the probability distribution

of the input symbols is Gaussian since the second order moments completely specify the input-

output statistics. Next, it has been proven that a sufficient condition for equalization is that the

probability distribution of the output (recovered) symbols zi be equal the probability distribution

of the input symbo!s aj. This principle is then used to formulate a general class of criteria that
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converge to the desired system response under the assumption that the probability distribution

of the input symbols belong to a certain class of continuous-type distributions. This is, however,

a rather restrictive condition; for example, in digital communicationc the input distribution is

inevitably of discrete type.

The paper by Shalvi and Weinstein [6] proves that it is sufficient to equalize the second and

fourth order cumulants of the input and the output probability distributions. Based on that, new

criteria are presented, that require only partial knowledge of the input distribution. Godard's

criterion is shown to be a special case of these criteria. An important feature of the proposed

criteria is that their maximization correspond to the desired response, and they do not suffer

from unwanted local maxima. Therefore, the associated gradient-search algorithm is expected to

converge to the desired response regardless of initialization.

In this paper we extend the results of [6]. First, we present necessary and sufficient conditions

for equalization based on high order cumulants of the corresponding probability distributions. We

then propose a general class of criteria, prove that their optimization must yield the desired solution,

and present the associated gradient-based algorithms. These criteria are universal in the sense that

they do not impose any restrictions on the probability distribution of the input symbols. We briefly

address the problem of additive noise in the system and show that in some important cases, e.g.

when the additive noise is Gaussian, the proposed criteria are unaffected.
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II. Mathematical Preliminaries

Let x 1 , z2,... Xn be a set of real/complex random variables with the joint characteristic function

1)(WI, W2,..Wn) = E e imul WixI}

where j = VC'T , and E{- stand for the expectation operation.

The joint cumulants are defined by:

cum(z : pl;2 :p2;...;Xn :p =n)

= (j)P OPln(wi, w2,,., .,)
0P1OWP 2 ... 0w."I W=O

where pi are non-negative integers, and p = pi.

For notational convenience, if pi = 1 we do not write it in, that is:

cure(... ;Xi ;.. cure(... ;Xi; ... )

The following properties can be verified:

(p.1)

cure(XI : PI; X2 :P2; ... ;Xn : pn)=

C U c u ( X I; X 1; . . . X I ; X2 ; X2 ; . . . X 2; . . . ; Xn ; Xn ; . . . n)

Pl times P2 times p. times

(p.2) If

Yi "E bkixk i =1,2,... m
ki=1

Then
n nl n

CUM(YI; Y2 ;. .1/r) E E , *. bk2 ... bk..mzixk;.xm
k1 =1 k 2=1 k,=l

(p.3) If xi and zj are statistically independent and pi,Pj > 0, then

cure(X : P;X2 : P2; ... ;Xn : Pn) = 0
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(p.4) If xi, x2 ,. .. x,, are jointly Gaussian, then:

CUr(XIPI; X2 P2; ... ;Xn Pn)O

whenever p pi~;, > 2.



III. Development of the Criteria

The basic system of interest is illustrated in Figure 1. We shall make the following assumptions:

(i) The input sequence ai consists of real/complex i.i.d. random variables with a non-Gaussian

but otherwise completely arbitrary continuous/discrete probability distribution. We shall

assume the existence of certain cumulants of aj.

(ii) The unknown system (channel) H = {hi} is a possibly non-minimum phase linear time

invariant filter whose transfer function has no zeros on the unit circle, that is:

H(w)= hiejw# 0 0 < w _ 2r(1)

(iii) The equalizer C = {cj} is a tap-delay line of sufficient length so that truncation effects can

be ignored.

Let S = {si} denote the combined channel-equalizer response, that is the convolution of H with

C (see Figure 1). Thus

si = hi o c, = _ cjhj-. (2)

and

zi = ai o si = slai- (3)

Invoking properties (p.1) and (p.2)

cum(z :p; z! : q) = cum (zi; zi;... z; z ; z;... z )

p times q times

=cum (E si ai, ES12 a5 . 12 ;...- ;E ia-,
\ 1 12 1P

ki k2 k9

11 12 1p k1  k2 kq q

.;ai-,; a7_k, ; a,-k; ;... ; a7 ) (4)
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Invoking properties (p.3) and (p.1)

cur ( a - ;a _.; . ...;aij-,;a -k,;a k,; ... ;a7-k) =

{cum(ai : p; a : q) 11 = 1: 1 = k, = k2 k
(5)

0 otherwise

Substituting (5) into (4)

cum(z, : p;z' : q) = ( 7ssTq) cum(ai : p;a* : q) (6)

This equation, relating the cumulants of the output symbols zi to the cumulants of the input

symbols ai, form the basis to the subsequent development. We shall distinguish between the

complex case in which ai and/or si are complex valued sequences and the real case in which both

sequences are real valued.

Thorem 1. (complex case)

Let ai be a sequence of real/complex i.i.d. random variables with some given probability

distribution. Suppose that cum(ai; a!) > 0 and cure (a : p; a! : q) $ 0, where p and q are some

non-negative integers such that p + q > 2, exist. Let si be a deterministic (possibly infinite)

real/complex valued sequence. Let the random variables zi be specified by (3).

If

cum(z; zj4) = cum(ai;a*) (7)

Then:

Icum(zi : p; z, : q)j < jcum(ai p; a! q)l (8)

where equality holds if and only if

[ej  l=k
s = ejo60-k (9)
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for some fixed integer k and OcV.

Proof: Invoking (6) for p = q = 1, if

IS,. 1si2 = CUM(Zi; Zi)=
cum(a; <)

Then

IS112 < 1

Thus

Isl<1 V

Hence, for p + q > 2,

I8 lp+q < Isl 2  V

Thus, invoking (6),

,cum(Zj , pZ. : q),l~ tss,
Icum(ai p; a! : q)I

_ Isi p+ , < Isl2 = 1
1 1

where equality holds if and only if sl satisfies (9) for some fixed integer k and 0,E7 1 . Q.E.D.

Note that the condition cum(ai;a.) = E{jai- E{ai}12} > 0 implies that ai is a non-trivial

random variable with a non-zero variance. The assumption cum(ai p; a. : q) $ 0 where p + q > 2

implies that the probability distribution of the input symbols is non-Gaussian (see property (p.4)).

Corollary 1.1

Under the assumptions of theorem 1.1,

zi = &e'ai-k (w.p.1.) (10)

for some fixed integer k and 00V'1 if and only if

cum(z,; z.) = cum(ai;a7) (11)
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and

Icum(z :p; z :q)j = jcum(aj : p; a :q)j, (12)

for any non-negative integers p and q such that p + q > 2.

Proof: By theorem 1, if (11) and (12) are satisfied then

st = ejo 61-k (13)

for some fixed integer k and 00V 1 . Substituting (13) into (3) immediately yields (10).

On the other hand, if (10) is satisfied, then by properties (p.1) and (p.2), for any non-negative

integers p and q,

cum(zi:p;z* :q) = cum(zi;zi;...;z,; z!;z!;...z!)

p terms q terms

= cum (ei.'ai-k; ei ai-k;... ; dJajA;

p terrs

e-joak e-j .!_: .. eja_k)

q terrns

= eji(P-q)qcum(ai-k; ('-k; ... ; ai-k; a!k a,! k;... ; a7_k)

p times q times

- ei(P-")cum(ai;a;.. "a; a ;aT;. ;a!)

p terms q terms
= e(P-q)0um (ai : p; a! : q) (14)

which implies (11) and (12). Q.E.D.

Corollary 1.1 asserts that the output (recovered) sequence is identical to the input sequence up

to a constant delay and possibly a constant phase shift if and only if the variance of the individual

zi and the magnitude of any of the non-zero cumulant of order p + q > 2 are equal to that of ai.

the constant delay is unavoidable because of the stationarity of the input sequence. However, the

phase shift can be identified in some cases, as indicated below.

9



Corollary 1.2

Under the assumptions of theorem 1,

zi = eilkai-k w.p.1 (15)

where k is some fixed integer and

(p -q) = 2rN, N - integer (16)

if and only if

cum(zi; z) = cum(ai;a!) (17)

and

cum (z : p; 4 : q) = cum (ai, : p; a! : q) (18)

for some non-negative integers p and q such that p + q > 2.

Proof: If zi and ai are related by (15), then the corresponding cumulants are related by (14),

which immediately imply (17) and (18).

On the other hand, if (17) is satisfied, then by theorem 1

Icum (z, -p; z! -q)~ I Icum (ai :p; a! : q

if and only if

0e-k = (19)

for some fixed integer k and OET1Z, in which case

cum (zi :P; z? q) s q=e~_)

cum (ai :p; a :q) I t

which is equal to 1, if and only if (16) is satisfied. Substituting (19) into (3) immediately yields

(15). Q.E.D.
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Corollary 1.2 asserts that if cum(ai : p; a7 : q) 0 0 where p 0 q, then the indicated phase shift

can be identified up to an ambiguity of order jp - qI. Thus, if IP - qj = 1, then the phase shift

between the input and recovered symbols can be completely eliminated. However, we note that in

most signal constellations used for data communications, the input distribution is symmetric under

rotation, in which case All cumulants of order p $ q are equal to zero.

Theorem 2 (real-case)

Let ai be a sequence of real i.i.d. random variables with some given probability distribution.

Suppose that cum(ai : 2) > 0 and cum(ai : p) 4 0, where p > 2, exist. Let si be a deterministic

(possibly infinite) real-valued sequence. Let the random variables zi be specified by (3).

If

cum(zi :2) = cum(ai :2) (20)

Then:

cum(zi :p) < 1 (21)
cum(a :p) -

where equality holds if and only if

Si = Oi-k (22)

whcre I is some fixed integer and

1 p odd
p =(23)

+ 1 p even

Proof: Invoking (6) for p = 2 and q = 0, if

' 2 -cum(zi : 2)
cum(a, : 2) =1

Then

2S1 1 Vl
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Thus

si_1 V1

Hence, for p > 2,

Thus, invoking (6) with q = 0,

cum(z, :P) = ESP' < ES 1
cum(ai :p) I I

where equality holds if and only if (22) is satisfied. Q.E.D.

The condition cum(a, : 2) = E {(ai - E{ai}) 2} > 0 implies that ai is a non-trivial random

variable (with non-zero variance). The condition cum(ai : p) 0 0 where p > 2 implies that the

probability distribution of a, is non-Gaussian (see property (p.4)).

Corollary 2.1

Under the assumptions of theorem 2,

zi = Pai-k (w.p.1) (24)

where p is specified by (23), if and only if

cum(zi :2) = cum(ai :2) (25)

and

cum(zi : p) = cum(ai : p), (26)

for any p > 2.

Proof: By theorem 1, if (25) and (26) are satisfied, then

81 = P61-k (27)

where p is specified by (23). Substituting (27) into (3) immediately yields (24).

12



On the other hand, if (24) is satisfied, then following the same development as in (14)

cum(zi :p) = pPcum(a, : p) (28)

where by (23) pP = 1. Q.E.D.

Recall [5] theorem 2.2, a sufficient condition for the output (recovered) sequence to be identical

to the input sequence, up to a delay and a sign, is that the probability distribution ,nf the individual

zi be equal the probability distribution of ai. According to corollary 2.1, it is necessary and

sufficient to equalize the second order cumulant and any other non-zero cumulant of order p > 2.

Furthermore, if the higher order cumulant being used is odd, the sign ambiguity can be resolved.

Theorem 1 suggests the following family of equalization criteria, indexed by p and q:

Maxlcum(zi : p;z!: q)z

Subject to : cum(zi; z*) = cum(a,; a!) (29)

We note that the choice p = q = 2 yields the optimization criterion proposed in [6]. In [6] it

is assumed that the input symbols are zero-mean (i.e., E{ai} = 0), in which case we obtain the

average power constraint E{Iz 12} = E{Jai12}.

In the real case, theorem 2 suggests the following family of criteria, indexed by p:

Max {sign [cum(ai p)]cum(zi : p)}

Subject to :cum(zi 2) = cum(ai : 2) (30)

where

+1 X >0

Recall (6), if p is even and st are real valued,

sign (cum(zi : p)) = sign (cum(ai : p)) (32)

13



Thus, for even p, (30) reduces to:

Maxlcum(zi :P)I

Subject to : cum(zi : 2) = cum(ai : 2) (33)

By the theorems, the set of solutions of these constrained optimization criteria correspond to

the desired response. We now want to make sure that the criteria function do not have spurious

local maxima.

Consider first the real case. By (6), the constrained maximization in (30) is equivalent to:

Max S

Subject to:Zs = 1 (34)

By the constraint

80 i s 1/ (35)

By the constraint, there is at least one non-zero sj. Thus, we suppose, without any loss of

generality, that 0 < Isol _< 1. Substituting (35) into (34) we obtain:

f W + 1- (36)
too to

Clearly, the maximization of .f(.) is equivalent to solving (34). We note that f(.) is well defined

for FI#o at = 1 - so < 1, which is the domain of interest. Differentiating (36),

= 1s j00 1 (37)

The roots of (37) axe, for even p:

si=O or si=" s =1 -s0

and for odd p:
1/2

si=0 or si=+ E SO

14



Thus, recall the constraint ZI S2 = 1, the stationary points of f(_1) for even p are all vectors

s having M non-zero components (M = 1,2,3,...) that are equal to ±i/VM-. For odd p, the

stationary points of f(1j) are all vectors s having M non-zero components that are all equal either

to -l/v'M or to +I/v .

To determine weather that stationary points are local maxima, local minima or unstable equi-

libria (saddle point), we need to calculate the Hessian, that is the matrix partial derivatives

,92 f(,1)/Osj8sj at the stationary points. Following straight forward algebraic manipulations, the

Hessian is given by:

M-1

27 (77)
(0)

(77)
2t7

M-1
(0)

(0)
(0)

where

oP-2
2

17 = cr"p(p -2) (L

where a -1 in case the stationary point is the vector § whose non-zero components are all equal

to -lv'rM, and a = +1 in case the stationary point is the vector A whose non-zero components

are all equal to +i/v-M. We note that aP = 1 for even p. The (M - 1) x (M - 1) block at the

upper left corner of the matrix corresponds to the non-zero components of the vector s (excluding

so). If M = 1, the Hessian reduces to a diagonal matrix whose diagonal elements are all equal to

p = -aPp. Thus, for even p all the eighenvalues of the matrix are negative indicating that all the

15



vectors s having only one non-zero component of magnitude 1 must be local maxima. By theorem

2, we already know that these are also the global maxima. For odd p, all the eighenvalues are

either negative if a = 1, or positive if a = -1. Thus, for odd p, all vectors s having one non-zero

component that is equal to 1 are local maxima, by theorem 2 they are global maxima, and all

vectors p having one non-zero component that is equal to -1 are local minima. In fact, they are

global minima. This indicates once again the ability to resolve sign ambiguity in case p is odd.

If M = 2, one eighenvalue of the Hessian equals to 21?, and all other eighenvalues equal to p.

If M > 2, it can easily be shown that one eighenvalue equals to (M - 2)7, (M - 2) eighenvalues

are equal to 277, and all other eighenvalues are equal to 1L. Since IL and 77 have opposite signs, it

indicates that all other stationary points specified by M = 2,3,... are unstable equilibria (saddle

points). We can therefore state the following lemma:

Lemma 2.1 (real-case)

Under the assumptions of theorem 2, the only local (hence, global) maxima of the constrained

optimization in (34), or equivalently (30), correspond to the desired solution s, = Pbi-k, or equiva-

lently zi = pai-1, where k is an arbitrary constant delay, and p is specified by (23).

The proof of the lemma is self-evident.

We now turn to the complex case. If p q, then the constrained maximization in (29) is

equivalent to:

Max ISl2p

Subject to: I 112 = 1 (38)

The optimization in (38) is identical to the optimization in (34), only that instead of sl we have

the variables Isal, and instead of p we have 2p. Thus, in complete analogy, the set of stationary

points of the constrained optimization in (38) are all vectors _ having M non-zero components of

magnitude 1/V. For M = 1 we obtain the set of local maxima which, by theorem 2, are also the

16



global maxima. All other stationary points for M = 2,3,... are unstable equilibria. We therefore

conclude the following:

Lemma 1.1 (complex case)

Under the assumptions of theorem 1, the only local (hence, global) maxima of the constrained

optimization in (38), or equivalently (29) with p = q, correspond to the desired solution si = ej¢oi-k,

or equivalently zi = ei~ai-k, where k is some fixed delay and 0 is an arbitrary phase.

Comment: The anlysis of the stationary points in the complex case with p q is more compli-

cated and will therefore not be presented here. As already pointed out, in most signal constellations

used for data communications, the probability distribution of the input symbols is symmetric under

rotation, in which case only p = q is of interest.
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ALGORITHM IMPLEMENTATION

The constrained optimizations in (34) and in (38) give rise to the following gradient-based

algorithm:

s= si + OF(39)

1-8 (40)
8t

where F is the objective function to be maximized, 6 > 0 is the step-size, si are the unit sample

response coefficients of the combined channel-equalizer prior to the iteration, and s4 are the unit

sample response coefficients after the iteration. The normalization operation in (40) is necessary to

satisfy the indicated constraint. In the case of (34), F = F, sf, and in the case of (38) F = E, Is'l 2p .

Since in both cases it has been proved that F has no spurious local maxima, the algorithm is

expected to converge to the desired solution regardless of initialization.

A common measure of equalization performance is the inter-symbol-interference (ISI) defined

by:

ISI(s) IS1l2 -Iso (41)

where Isl~nx is the component of . having the maximum absolute value. Clearly, ISI = 0 if and

only if I has only one non-zero component - that is the desired response, and small ISI indicates

the proximity to the desired solution.

To analyze the rate of convergence of the ISI using the gradient-search algorithm in (39), (40)

we suppose, without any loss of generality, that so is the component of having the largest absolute

value. Thus,

ISI(s) = 1 1'/Iso 12 (42)
l#0

Now, if F Z £, s12p (complex case), then OF/Osi = 2plsdi2P-2si, in which case

I Is l = 1 + 2pblsIl 2p-2  s, (43)
Is"I Is I 1 + 2p61,o12P- 2 "Io'-43

18



Since Z, Isdl2 = 1 and since Isil <_ Isol < 1, then:

1 < 1 + 2pIsi 2p- 2 < 1 + 2p6, i 3 0 (44)

Using (44) in (43),

1 Isi< Is'I (45)

1 + 2pI1o- ISOM I1

Therefore, using (45) in (42),

1
(1 + 2p6)2 ISI(s) S ISI(s') < ISI(s) (46)

The right inequality asserts that the ISI monotonically decreases from iteration to iteration,

where the left inequality sets an upper bound on the rate of convergence of the ISI. It asserts that

the factor of improvement in the ISI from iteration to iteration is bounded by 1/(1 + 2pb)2 . Near

the point of convergence, Is01 ;- 1 and Isil 0 for i 9 0, in which case the left inequality is tight

indicating that the rate of convergence is approximately 1/(1 + 2p6) 2. It therefore suggests to use

a large step-size, where the left inequality in (46) ensures monotonic convergence for an choice of

b.

If we choose a very large 6, the term 6b-. appearing on the right hand side of (39) becomes

dominant, and in the limit we approach the following algorithm:

= OF (47)

Si (48)

where we note that 6 can be factored out of (47) because of the normalization operation in (48).

In this setting, the iterated s is determined solely by the direction of the gradient. In this case,

I- = I = I So12p - (

19



since

then

ISI111 ~I21Iso n12 lsi2(2p-1)/IsoI 2(2p- 1)

IsI(s_") = ]ii I"I 2/I =. Z

< ( Is,12/1so5 ) - [ISI(s)] 2p- 1  (51)

indicating a very fast, at least exponential, convergence of the ISI.

Similar results can be obtained in the real case where F = sf.

The algorithms in (39), (40) and in (47), (48) axe explicit since they are presented in terms

of the unit sample response coefficients si of the combined system S. We want to express these

algorithms in terms of the tapes ci of the equalizer C. To do that, we use the convolutional relation

between si and ci:

si = hi o ci = _ c1hi-I (52)

where hi is the unit sample response of the unknown system (channel) H. Invoking the chain rule

for differentiation,

OF _ OF OF

=EL hjZ-T = h 0 (53)

where we note that in the complex case OF/Oci = OF/OR,(ci) + jOF/Olm(ci).

By assumption (ii), the Fourier transform H(w) of hi contains no zeros on the unit circle.

Therefore, its inverse H-1 (w) exists. We denote by hi" the inverse Fourier transform of H-1 (w).

Thus, h71 o hi = 6i. Convolving both sides of (53) by (h:)*

OF= (h_!)* o OF (54)
Tci

Substituting (52) and (54) into (39),

hi o c' = h, o c, + 6 (h:D" o LF (55)

2c

20



convolving both sides of (55) by h7 1,

OF
c = c, +6 h7' 0 (h-;) o- (56)

The Fourier transform of h-' o (h-)* is l/jH(w)f2 . Thus, if H(w) is spectrally white, that is:

IH(w)1 1 0 < w < 2r (57)

then h71 o (h:) - =i, and (56) reduces to:

OF
= +6ci (58)

Also,

+1 IS(w)I 2dw - U IH(w)C(w)12dw
+ 'r

1 f.J IC(W)I 2dw = 1 c,I2 (59)

Therefore, normalizing the sl is the san.- 3s normalizing the cl:

,,' 1 ,(60)

1  icI

The algorithm specified by (58), (60) is identical to (39), (40) if H is spectrally white, implying

a spectral pre-whitening operation. Only in this case, a gradient step in the S domain is equivalent

to a gradient step in the C domain.

Similarly, under the spectral pre-whitening operation, the algorithm is (47) (48) is equivalent

to:

, OF (61)
04F

i4 1 ci (62)
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Next, we want to develop an explicit expression for the partial derivatives OF/Ocm. In the

complex case with p = q,

F = Icum(zi :p;z! :p) =

= Icum(a, p; a! p)l Z ISL p  (63)

Therefore,

OF1 = 2plcum(ai p;a! : p)IsP (s ) -  (64)
asm

Substituting (64) into (53),

OF_ = 2plcum(ai : p; a! : p)l sP(sT)P-1 h.-,, (65)
Ocm

Now,

cum(zi :p;z!: p- 1;y-m) = cum ($sIai - ii; ' ' ; - sLr ai - I,;Z s4 k a!- k,

"'';_,a! kp1ikp-,Eha

= Z...EEZ...ZEsal ... 8s;1.. Z4,hZ

11 1p ki kP
- cuM (ai-,;...; ai-p;a!_kP;...;;aakpam,)

= cum(ai:p;a :p)ZPs(si)P"1 hl_, (66)

1

Combining (65) with (66)

OF - 2 lcum(ai :p;ai: :p)cum(z: 1
cM = cum(a, :p; a :p) :P;z' P -1h-mJ

= 2p. sign(cum(ai :p; a! : p)]cum(zi :p; z' :p - 1; y..m) (67)

In the real case,

F = sign[cum(ai :p)]cum(zi :p)

= Icum(a, : p)l sP' (68)
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Following the same considerations leading from (63) to (67),

OF p sign[cum(ai : p)]cum(zi: p - 1; yi-m) (69)

The computation of the gradient using either (67) or (69) requires knowledge of the sign of

the corresponding cumulant of ai, and this is the only prior information concerning the input

distribution that is required. We also need to know the joint cumulant of the input yi and the

output zi of the equalizer. These cumulants can be estimated using the available data.

To demonstrate that, consider the real case with p = 3. Assuming that ai is zero mean, yi and

zi are also zero mean, in which case (69) reduces to:

OF - sign[E{a3}]E{zyi_,} (70)

The expectation E{ziyi_.-m} may be approximated using the current realization zyi-,n, or it

may be estimated by the cumulative average Z i zyi-m, where N corresponds to the number

of terms in the sum. These approximations result recurbive/sequential algorithms (the cumulative

averaging can be evaluated sequentially) in which we perform one iteration per symbol.

Alternatively, using the input-output relation:

zi = 0C = C cjyi- (71)

we obtain:

E{z4i-,.y = E {ZCLliI i-.M}

Z Z Ck1 Ck2E {Yi-LYi-kYi-k 2 } (72)
k, k2

This equation suggests a non-recursive it-rative algorithm in which we first estimate the expec-

tation E{Yi-Mi-k, Yi-k 2 } by the empirical averaging kR i Yi- -Yi-k over the observed block of

data, and then we iterate using the proposed algorithms until convergence is accomplished.
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As another case, consider (69) with the choice p = 4. Assuming the a, is zero mean, the

components of the gradient (subject to the indicated constraint) are:

0F
1c = 4 sign[cum(ai : 4)]E{z>y_m} (73)

where we note that cum(a; : 4) = E{a? } - 3E{a?}. The term E{z~yim} can similarly be ap-

proximated by replacing the expectation by the current realization, or by performing empirical

averaging.

Consider now the complex case with p = q = 2. Once again we assume that ai is zero mean.

For simplicity, we further assume that E{a?} = 0 (e.g., the real and complex components of a,

are statistically uncorrelated with equal variance - a condition that is satisfied for most signal

constellations used for data communications). Under these assumptions, (67) reduces to:

0F = 4 sign[cum(ai : 2;a!: 2)]E{IZ,12ZiyT_m} (74)

This formula coincides with the result developed in [6]. The expectation in (74) can be estimated

by the current realization (in which case we obtain the stochastic gradient algorithm presented in

[6]), or by cumulative averaging operation.
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EFFECT OF ADDITIVE NOISE

So far, we have completely ignored the presence of additive noise in the system. To study

this effect, let the noise (error) signal ei be modeled as the output of a linear time-invariant filter

T = {tI} driven by a white (i.i.d.) noise process vi as illustrated in Figure 2. We suppose that

ai and vi are statistically independent. Note that if T = C then vi represents the additive noise

generated at the input to the equalizer. If T = H o C, the vi represents the additive noise generated

at the channel input. The extension of the model to include several noise sources is straightforward.

Invoking the statistical independence between ai and vi,

cum(z, p; z!,: q) = cum(a, p; a! q) Z fs8 'a

+ cum(v: p; v! q) tp (75)

Thus, if the cumulants of ei = vi o ti are known, or independently measured, their effect can be

removed by a simple subtraction.

Perhaps the most interesting observation is that if vi is Gaussian, then cum(vi : p; v! : q) = 0

for p + q > 2. Therefore, the criteria functions in (29) and (30) are unaffected by the presence of

additive Gaussian noise. Substituting p = q = I in (75),

cum(zi; z!) = cum(ai; a!) IS, 12 + cum(v1 ; v!) 1tl2  (76)
1 1

Thus, the additive Gaussian noise only affect the constraint. Consequently, it can be verified

that the optimization criteria still converge to the set of desired solutions up to a constant gain

factor.
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